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LEITER TO THE EDITOR 

Biased diffusion on random networks: mean first passage time 
and DC conductivity 
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t School of Physics and Astronomy, Tel-Aviv University, Ramat Aviv, 69978 Israel 
i Department of Fluid Mechanics and Heat Transfer, Faculty of Engineering, Tel-Aviv 
University, Ramat Aviv, Tel Aviv 69978, Israel 

Received 20 May 1985, in final form 15 July 1985 

Abstract. Biased diffusion on a segment with a dangling end is considered, employing a 
method previously developed by the authors. It is shown that a definition ofthe drift velocity 
which is different from that of White and Barma leads to non-singular behaviour as a 
function of bias. The two approaches to biased diffusion are compared and a critique of 
their validity is presented. 

In a recent publication, White and Barma (1984) studied the problems of diffusion on 
certain networks, including percolation clusters, under the influence of external bias. 
One of their results is that the drift velocity corresponding to a one-dimensional lattice 
with random length branches (‘random comb’ cf figure 1( a ) )  varies non-monotonically 
as a function of bias: it first increases, then decreases to zero. For a certain distribution 
of the branch lengths they find that the drift velocity vanishes above a critical (finite) 
value of the bias. 

In the present letter we wish to revisit this problem on the basis of an exact method 
for analysing properties of random walks on networks, which we have recently 
developed (Goldhirsch and Gefen 1985a, b). Using our approach we present a new 
method for calculating the DC resistance (and consequently the drift velocity). We 
show that an identification of the drift velocity which is different from the one defined 
by White and Barma involves no singularity as a function of the bias. The alternative 
definition we propose seems to us physically appropriate. This drift velocity, which 
is proportional to the mean value of the DC current, actually increases with the bias. 
In the limit of infinite bias the mean first passage time diverges, but this fact describes 
a transient property of the system and does not imply a vanishing conductivity. Finally 
we verify that for the specific choice of the distribution of lengths of the side branches 
which was made by White and Barma, the average mean first passage time (QMFT 
indeed undergoes a phase transition. This does not happen for most choices of such 
a distribution-and should be regarded as an artefact of this specific choice (which 
may not be of general applicability for percolation clusters). Moreover, in the calcula- 
tion of White and Barma the effect of any side branch on the motion of the random 
walker is decoupled from the effects of the other side branches. This decoupling 
property does not seem to be of general validity (e.g. it is not valid for mean first 
passage times). 
0 On leave of absence from Institute for Theoretical Physics, University of California, Santa Barbara, CA 
93106, USA. 
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Figure 1. ( a )  A 'random comb'. ( b )  A segment with a single dangling end. 

Consider for simplicity the network depicted in figure 1( 6). There are n, + 1 points 
on the segment AC, n2+ 1 points on CB and n3+ 1 points on CD. The field direction 
is as shown in the figure. A random walker is assumed to have a probability p l > O  
(per step) to move parallel to the projection of the field and p 2  < p1 to move against 
it. A 'step' is assumed to  last for a time At and lead the walker to a nearest neighbour 
only. 

It is convenient to define the following quantities: 
(a) zi(n)-the probability to stay at a vertex for n steps. Hence: z A ( n )  = (1 -pl)";  

(b) T,,(n)-the probability to leave a vertex i (e.g. A) on the first step and reach 

(c) &(n)-the probability to leave vertex i on the first step and return to i for 

(d) Gi,( n)-the probability to start at i and reach j for the first time, after n steps 

Let P(n) be any of the above probability functions. It is convenient to define a 

2 c ( n ) = p - 2 p l - p 2 ) n ;  R,(n)=(1-p2)". 

vertex j for the first time after n steps, without having ever returned to i. 

the first time after n steps, without having reached vertex j in the process. 

(it is allowed to revisit i ) .  

corresponding generating function or 4 probability: 

It follows that Gij (4 = 0) = 1 and that ( f )MFT from A to B is: 

( t ) M m  = dGAB/ d i4 I+ =o. ( 2 )  

(Note the difference between ( c ) ~ ~  and the transversal time, as defined by White and 
Barma (1984).) 

probabilities add and multiply like 
regular probabilities, except that one does not have to keep track of the number of 
steps involved. For example if fA,(n) and &(n) are as defined before then we 
obtain for GAB: 

It is known that generating functions or 
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The corresponding + probabilities satisfy 

GAB(+) = 'f '~c(4) G c B ( ~ )  (4) 

which demonstrates our point. 
Let (a, p )  be a segment of ( n  + 1) points with no branches (e.g. AC). Define T:( 4 )  

as Tu@(+) when the field points from a to p, T i ( + )  as T&(4) and Qn(4) as Qua(+). 
It can be shown that Qua(+) = Qau(+) and 

C(+) = (Pl/Pz)nTn(+), ( 5 )  

cf Goldhirsch and Gefen (1985b). It follows that: 
(a) The 4 probability Q,(+)  to walk from C to C without reaching A, B or D in 

the process is (the explicit dependence on + is suppressed for notational simplicity): 

a(+) = & / ( I  -Xc(Qn,+ Qn2+ O n , ) ) .  

zA = x.4/ ( 1 - xA On, 1. 

zD = xD/ ( 1 - x13 Qn3) * 

(6) 

(7) 

(8) 
(d) The 4 probability Sc to leave C and return to C for the first time after having 

(b) The + probability to go from A to A without reaching C is 

(c) Similarly for the vertex D 

visited A or D is 

&(4)= TT,Ti,ZA+ TT3Ti3ZD. (9) 
(e) The + probability R, to start at C and return to C without reaching B is 

Equation (12) expresses the generating function for the mean first passage time as an 
algebraic form in the basic + probabilities: T%, Q's and X's. These quantities can 
be calculated (cf Goldhirsch and Gefen 1985b). We quote some of the results 

T: ( 4  = 0) = (P1- Pz)/(l- r n )  T i =  r"(PI-Pz)/(l-r") (13) 

Qn (+=0)=p2(1- rn- l ) / ( l - rn)  (14) 

where r =p2/pl; and 

and 

in the limit of large ni's. 
For a sufficiently large branch length n3 the leading term in (15) is proportional to 

r-% or exp[n3 log(p,/p,)]. If we consider a distribution in the lengths of the side 
branch as chosen by White and Barma (1984): 

Pr( n3)  = C e-'"', O s n 3 < m  (16) 
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then (t)MF-T diverges when log p1/p2> a. Hence p , / p 2  = e" is a singular point for (fkFT. 
This criticality is not generic; had we chosen Pr(n,)aexp(-bn,k') or a power law 
Pr(n,)a  n i k ,  no criticality would have resulted. ((?)Mm never diverges for k'>  1. It 
diverges for any non-zero bias for k'< 1 and for any k At percolation Pr( n) - n-k 
and above it Pr( n) - exp( n'-l'd), see e.g. Stauffer (1979). In both cases no criticality 
exists at finite bias. (For the latter, however, we may have criticality due to atypical 
clusters.) We also remark that in the case of many branches or the 'random comb' 
that was originally considered by White and Barma, the contributions of the different 
branches do not decouple (Goldhirsch and Gefen 1985b) in the calculation of the ( f ) M F T .  

Returning to the question of conductivity we note that if we assume a time 
independent density p of non-interacting particles at both end points A and B (e.g. 
by connecting both end points to large particle reservoirs of the same chemical 
potential), the current from A to B is given by 

I A B =  P ( T L -  TiB) l ,=o/~t .  (17) 

Equation (17) follows from the fact that TLB( c$ = 0) is the total probability of a particle 
leaving A to reach B, without returning to A, and thus contribute to the net forward 
current. Similarly TiA is proportional to the net backward current. It is rather easy 
to see that T i B (  4 = 0) does not depend on the existence of a side branch. All the side 
branch can do is delay the arrival of a particle. The total probability of arrival is 
unaffected by its existence. Another way to see this fact is by noting that the total 
probability of a walker who wandered into the sidebranch CD-to return to C is 1 
for every finite length branch. This observation is, of course, verified on the relevant 
formulae (Goldhirsch and Gefen 1985b). Let thus V be the potential difference between 
points A and B. It follows from the above discussion that the resistance between these 
points is given by 

Assuming pl = K exp(E/kBT) ,  p 2 =  K exp(-El kBT) where E is the field component 
along AB and kBT, the Boltzmann factor, and denoting n = n, + n2 we obtain 

where use was made of E = VAB/n and (13). In the limit of small bias R E  n as 
expected. Since p ,  + p 2 S  1, K S [ 2  cosh( V/ nkBT)]-'. Assuming for simplicity p1 + p 2  = 
1 (i.e. no staying at a point): 

RAB=( VAt/p)  coth( V/nkBT). (20) 

When V-, 00, RAB+ V or l/RAB+ 0, namely the conductance vanishes. No singular 
behaviour at any finite bias is found. 

One may relate these results to the drift velocity. The current ZAB = puD. This 
expression can be considered as a definition of a drift velocity uD. Since ZAB = E /  RAB 
it follows that uD = E/pRAB i.e. 

UD = ( 1/ n A t )tanh( V/ nkB T ) .  (21) 

Consequently uD increases monotonically with the voltage and no singularity at finite 
bias occurs. 
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White and Barma in their analysis chose to adopt a different definition of the drift 
velocity, which we denote by uWR. According to them, the current through a point A 
on a one-dimensional ring, ZA = ( N / n ) u w s ,  where n is the linear length tf’the system 
and N is the total number of particles in the system. The traversal time TN is defined 
as N /  ZA. Therefore, (vWB) = ( n /  fN), where ( ) denotes the time average !and configur- 
ation average). Since fN ot N, for fixed 1, (i.e. fixed backbone density) TN will diverge 
when N does. Approximating ( l / fN)  by l / ( fN) ,  White and Barma obtain (vWB)= 
( n /  fN) and thus the vanishing of (uWB), when N diverges. This should be contrasted 
with ( u D ) ,  which does not diverge even when ( f )MFT does. 

It seems to us that since in a realistic system (i.e. with many-body interactions) the 
particles in the dangling bonds do not allow the entrance of new particles from the 
backbone (where the net flow goes), our definition of drift velocity is more appropriate. 
The drift velocity of the particles which are trapped in the dangling bond(s) is basically 
zero and since they form the majority of particles for some probability distributions 
for the lengths of the side branches (as explained before), the ‘average drift’ is zero 
as predicted by White and Barma. Thus the two definitions of drift velocity do not 
‘contradict’ each other but refer to different physical questions. 

Finally, we wish to dwell on the question whether the influence of a dangling 
branch on average quantities is decoupled from the other branches. In the picture of 
White and Barma, which allows particles which reached an end point to return from 
it, the effect of the various branches on the mean transversal time is decoupled. They 
also consider a periodic system (e.g. identical reservoirs connected to both end points). 
We consider a different set up, i.e. the two reservoirs connected to the end points of 
the backbone are different (e.g. one boundary can be fully absorbing) and thus 
in our case, seems to be a more appropriate time. In that case we have shown that 
(even in the case of zero bias) the effect of the branches is not decoupled (see Goldhirsch 
and Gefen 1985b). 

In summary, one has to be extremely cautious when identifying the physically 
relevant quantities in the problem of biased diffusion. Non-monotonic dependence of 
the resistance on the bias (which is a result of e.g. the existence of bends in the 
backbone) will not be affected by the presence of dead ends. 

We would like to acknowledge useful comments of D Stauffer and useful correspon- 
dence with M Barma and D Dhar. This work was supported in part by grants from 
the US-Israel Binational Science Foundation (BSF). 
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